	Question	Name	Matrix	substance		Temperature,	Pressure,	Mass , m	Volume, υ	Specific volume, <i>u</i>	Specific internal energy, u	Specific enthalpy, h	Specific entropy, s	quality,	phase description	Note
No				water, H₂O	refrigerant- 134a	[°C]	[kPa]	[kg]	[m³]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[-]	H	H
~	Ψ.	▼ ×	¥	~	¥	¥	Ψ.	¥	۲	¥	₩.	₩.	¥	¥	▼	▼
Example	3-127	Lecturer		x			200	-	240						Saturated liquid-vapor mixture	25% mass is liquid, 75% mass is vapor

Given:

Substance: water

two intensive properties : P = 200 kPa, 75% mass is vapor

Phase description: Saturated liquid-vapor mixture

Solution:

From Table A-5:

TABLE A-5														
Saturated water—Pressure table														
		Specific volume, m³/kg		Internal energy, kJ/kg				Enthalpy kJ/kg	,	Entropy, kJ/kg·K				
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v_f	Sat. vapor, U_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid,	Evap., s_{fg}	Sat. vapor, s_g		
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270		

Temperature:

$$T = T_{\text{sat}} = 120.21 \,^{\circ}\text{C}$$

Quality:

75% mass is vapor
$$\rightarrow x = 0.75$$

Specific volume:

$$\nu = \nu_{\rm f} + x \left(\nu_{\rm g} - \nu_{\rm f}\right) = (0.001061~{\rm m}^3/{\rm kg}) + (0.75)[(0.88578~{\rm m}^3/{\rm kg}) - (0.001061~{\rm m}^3/{\rm kg})]$$

$$\nu = 0.66460~{\rm m}^3/{\rm kg}$$

Specific internal energy:

$$u = u_{\rm f} + x u_{\rm fg} = (504.50 \text{ kJ/kg}) + (0.75)(2024.6 \text{ kJ/kg})$$

 $u = 2023.0 \text{ kJ/kg}$

Specific enthalpy:

$$h = h_{\rm f} + x h_{\rm fg} = (504.71 \text{ kJ/kg}) + (0.75)(2201.6 \text{ kJ/kg})$$

$$h = 2155.91 \text{ kJ/kg}$$

Specific entropy:

$$s = s_f + x s_{fg} = (1.5302 \text{ kJ/kg} \cdot \text{K}) + (0.75)(7.1270 \text{ kJ/kg} \cdot \text{K})$$

 $s = 6.8755 \text{ kJ/kg} \cdot \text{K}$

	Question	Name	Matrix	substance		Temperature,	Pressure,	Mass , m	Volume,	Specific volume, u	Specific internal energy, u		Specific entropy, s	quality,	phase description	Note
NO				water, H ₂ O	refrigerant- 134a	[°C]	[kPa]	[kg]	[m³]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[-]	H	FJ
~	~	~	*	+	~	▼	~	4	~	~	Y	▼	₩.	~	▼	*
xample	3-127	Lecturer	•	x		120.21	200	-	240	0.66460	2023.0	2155.91	6.8755	0.75	Saturated liquid-vapor mixture	25% mass is liquid, 75% mass is vapor

Note: If your calculation work require interpolation of the given data in the table, please show the details steps of the involved interpolation. If you required more than a table, please show all the involved table and also the reason for the selected table. Please include the units for the properties in your calculation.

If this is the question in a test or final examination, your solution can be given as follow:

"The information of 25% mass is liquid and 75 % mass is vapour indicates this is a saturated liquid-vapor mixture." Or "Given phase is saturated liquid-vapor mixture."

"From Table A-5,"

"
$$T = T_{\text{sat}} = 120.21 \, ^{\circ}\text{C}$$
"

"The information of 25% mass is liquid and 75 % mass is vapour indicates quality, x=0.75."

"
$$\nu = \nu_{\rm f} + x(\nu_{\rm g} - \nu_{\rm f})$$
"

"
$$\nu = (0.001061 \text{ m}^3/\text{kg}) + (0.75)[(0.88578 \text{ m}^3/\text{kg}) - (0.001061 \text{ m}^3/\text{kg})]$$
"

"
$$\nu = 0.66460 \text{ m}^3/\text{kg}$$
"

And so on for other

[&]quot;The given substance is water."