

UNIVERSITI MALAYSIA PERLIS

TEACHING PLAN

Faculty	Faculty of Mechanical Engineering and Technology	Course Coordinator	Ts. Dr. Tan Wee Choon	L	
Course Code	MMJ10403		Assoc. Prof. Ir. Ts. Dr. Nasrul Amri Mohd Amin	L	
Course Name	Thermodynamics I	Tanahing Tanın	Ts. Mohd Asrul Bin Md Saad	TE	
No. of Credit	3				
Academic Session	2022/2023	Lecturer – (L) Tooching Engineer (TE)			
Semester	2	Assistant Engineer – (AE)			
Programme	1. Bachelor of Mechanical Engineering	Assistant Engineer – (AL)			
	2. Bachelor of Manufacturing Engineering				
Proroquisito		Groups	Group 1: Bachelor of Mechanical Engineering (72 students)		
Ficiequisite		Groups	Group 2: Bachelor of Manufacturing Engineering (1 student)		

A. CONTINUOUS QUALITY IMPROVEMENT (*Please skip this section for first time offering*)

Suggestion from the previous CER Action plan for this semester						
	Syllabus Contents					
-	-					
Delivery Methods						
No change	 Online async clinic sessions will be given to those who has interest. Not compulsory to all students. 					
	Assessments					
Give additional Quiz to student just to ensure that they understand the lecture along the lecturing weeks for CO3.	 The average percentage for Q3 and Q4 of final exam (that are mapped to CO3) are 65.96% and 35.6%, respectively. No other assessment was conducted in sem 1 academic session 2022/2023. However, based on the CER of MMJ10403 in sem 1 academic session 2021/2022, 1 additional quiz and 1 additional assignment were proposed in sem 2 academic session 2021/2022. Such implementation was reported in the CER of MMJ10403 in sem 2 academic session 2021/2022, however it is not being implemented in sem 1 academic session 2022/2023. Introduce 1 quiz and 1 assignment for CO3, which is similar with the practice in sem 2 session 2021/2022. 					
No change	 It is suggested to conduct the experiment of First Law of Thermodynamics (Open system) which is related to CO2. Therefore, the component of laboratory report in CO2 instead of both CO1 and CO2 for sem 1 session 2022/2023. 					
No change	 Original coursework marks distribution in sem 1 2022/2023 is laboratory reports 6 %, quizzes 6 %, assignment 8% and tests 20%. Suggestion new coursework marks distribution in sem 2 2022/2023 is laboratory reports 3 %, quizzes 10 %, assignments 12% and tests 15% due to newly introduce coursework assessments for CO3. 					
	Other Issue					
-	-					

HEA-03 Status:

Completed

Not Applicable

1

B. COURSE SUMMARY

(B1) Synopsis

This course covers the basic concepts in thermodynamic such as the properties of substances, energy principles, first and second law of thermodynamics which applicable in engineering applications. The course emphasizes the study of energy sources and conservation, enthalpy, entropy, ideal and real gas through its concept and principles.

(B2) Learning Outcomes Matrix

Course Outcomes (CO)		of xity	Programme Outcomes (PO)										Knowledge Profile (if related)		
		Level	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	WK SK DK
CO1	Ability to analyse the properties of pure Substance.	C4	х												WK3
CO2	Ability to formulate energy balance accordingly to the first law of thermodynamics for a system.	C5	х												WK3
CO3	Ability to evaluate the second law of thermodynamics with entropy changes of substances in a system.	C5		х											WK3

(B3) Assessment Contribution

Components	Percentage (%)
Final Examination	60
Continuous Assessment	40

(B4) List of Experiments

No.	Title / Topic	Open Ended
1	Lab 1: Marcet Boiler	/
2	Lab 2: Temperature measurement	/
3	Lab 3: First Law of Thermodynamics (Open system)	/

(B5) List of Text Books / References

No.	Text Book / References
1	Cengel, Y. A., Boles, M. A., & Kanoglu, M. (2020). Thermodynamics: an engineering approach, 9th Edition in SI unit. New York: McGraw-hill.
2	Saggion, A., Faraldo, R., & Pierno, M. (2019). Thermodynamics: Fundamental Principles and Applications. Springer Nature.

C. TEACHING PLAN

Week	Торіс	Taxonomy Domain	Delivery Activities	Assessment Activities	Notes
1	Basic Concepts of Thermodynamics Introduction, Dimensions and Units, Closed and Open System, Properties of a System, State and Equilibrium, Process and Cycles, Temperature and Zeroth Law of Thermodynamics, Measuring Devices.	Cognitive C4	Lecture		
2	<u>Properties of Pure Substance</u> Phases of Pure Substances, Phase-Change Processes of Pure Substances, Property Diagrams, Property Tables, The Ideal-Gas Equation of State, Compressibility Factor and other Equations of State.	Cognitive C4	Lecture		
3	Cont			Quiz 1	
4	Energy Transfer Forms of Energy, Energy Transfer by Heat, Work and Mass, Forms of Work.	Cognitive C5	Lecture		
5	MID TERM BREAK				
6	Cont			Test 1 Assignment 1 (due)	
7	First Law of Thermodynamics The First Law of Thermodynamics, Energy Balanced for Closed System, Specific Heats, Conservation of Mass Principle, Energy Balanced for Steady-Flow System, Steady-Flow Engineering Devices, Energy Balanced for Unsteady-Flow Processes.	Cognitive C5	Lecture		
8	Cont				
9	Cont		Laboratory		
10	Cont			Laboratory Report	
11	Second Law of Thermodynamics Introduction, Thermal Energy Reservoirs, Heat Engines, Energy Conversion Efficiencies, Refrigerators and Heat Pumps, Reversible and Irreversible Processes, The Carnot Cycle and Principles, The Carnot Heat Engine, The Carnot Refrigerator and Heat Pump.	Cognitive C5	Lecture	Quiz 2 Assignment 2 (due)	
12	Cont			Test 2	
13	Entropy Entropy and Entropy Change of Pure Substances, Isentropic Processes, Property Diagrams involving Entropy, The T ds Relations, Entropy Change of Liquids, Solids and Ideal Gases, Reversible Steady-Flow Work, Isentropic Efficiencies of Steady-Flow Devices, Entropy Balance.	Cognitive C5	Lecture		

Version 1.0

Week	Торіс	Taxonomy Domain	Delivery Activities	Assessment	Notes
				Activities	
14	Cont			Quiz 3	
15	Cont			Assignment 3 (due)	
16	Study week				
17	Exam week			Final exam	
18	Exam week				
19	Exam week				

D. ASSESSMENT COMPONENTS

Contromes Complexity Outcomes		Assessment Components & Contribution									
		el of Iexity	Programme Outcomes		(G) al (I)	ering ems , DP)	ering ties , NA)	Final Examination (FE)	Continuous Assessment (CA)	Total	
		Leve Comp		Components	Group Individu	Engine Proble (WP, SP	Enginee Activii (EA, TA	%	%	%	
			PO1	Quiz 1	Ι				4		
CO1	Ability to analyse the properties of pure	C4	PO1	Assignment 1	I				4	30.5	
	Substance.		PO1	Test 1	I			. –	7.5		
			PO1	Final Exam Q1	I			15	2		
		C5	P01	Quiz 2					3		
602	Ability to formulate energy balance accordingly		C5	P01	Assignment 2					4	22.5
02	to the first law of thermodynamics for a			P01	Laboratory Report					3	32.5
	system.			PO1	Final Exam O2	I T			15	7.5	/.5
			PO1 PO2		I T			15	2		
	Ability to ovaluate the second law of		PO2 PO2	Assignment 3	T				<u> </u>		
CO3	thermodynamics with entropy changes of	C5	PO2	Final Exam O3	T			15	т	37	
005	substances in a system.		PO2	Final Exam Q4	I	WP1, WP3		15		0,	
1		Individual (I) %	100			60	40	100			
	Total			Group (G) %	0			00	40	100	

Summary of the assessment distribution:

Assessment	Distribution (%)	Components	Percentage (%)
Examination	60	Final Exam	60
Continuous Assessment	40	Quizzes	10
		Assignments	12
		Laboratory Report	3
		Tests	15

E. OTHER INFORMATION (IF ANY)

Please state other relevant information

Items	Notes
Sustainable Development Goals (SDGs)	SDG-7 Affordable and Clean Energy Related Topics: Energy Transfer
	SDG-13 : Climate Action Related Topics: 2nd Law of Thermodynamics

Knowledge Profile (WK, SK, DK)

Profile	Engineering	Engineering Technology	Engineering Technician
Natural	WK1: A systematic, theory-based understanding of the	SK1: A systematic, theory-based understanding of the	DK1: A descriptive, formula-based understanding of the
sciences	natural sciences applicable to the discipline.	natural sciences applicable to the sub-discipline	natural sciences applicable in a sub-discipline
Mathematics	WK2: Conceptually-based mathematics, numerical	SK2: Conceptually-based mathematics, numerical	DK2: Procedural mathematics, numerical analysis,
	analysis, statistics and formal aspects of computer and	analysis, statistics and aspects of computer and	statistics applicable in a sub discipline
	information science to support analysis and modelling	information science to support analysis and use of	
	applicable to the discipline.	models applicable to the sub-discipline	
Engineering	WK3: A systematic, theory-based formulation of	SK3: A systematic, theory-based formulation of	DK3: A coherent procedural formulation of engineering
fundamentals	engineering fundamentals required in the engineering	engineering fundamentals required in an accepted sub-	fundamentals required in an accepted sub-discipline
	discipline.	discipline	
Specialist	WK4: Engineering specialist knowledge that provides	SK4: Engineering specialist knowledge that provides	DK4: Engineering specialist knowledge that provides
knowledge	theoretical frameworks and bodies of knowledge for the	theoretical frameworks and bodies of knowledge for an	the body of knowledge for an accepted sub-discipline
	accepted practice areas in the engineering discipline;	accepted sub-discipline.	
	much is at the forefront of the discipline.		
Engineering	WK5: Knowledge that supports engineering design in a	SK5: Knowledge that supports engineering design	DK5: Knowledge that supports engineering design
design	practice area.	using the technologies of a practice area	based on the techniques and procedures of a practice
			area
Engineering	WK6: Knowledge of engineering practice (technology)	SK6: Knowledge of engineering technologies applicable	DK6: Codified practical engineering knowledge in
knowledge	in the practice areas in the engineering discipline.	in the sub-discipline	recognised practice area.
Identified	WK7: Comprehension of the role of engineering in	SK7: Comprehension of the role of technology in	DK7: Knowledge of issues and approaches in
issues	society and identified issues in engineering practice in	society and identified issues in applying engineering	engineering technician practice: ethics, financial,
	the discipline: ethics and the professional responsibility	technology: ethics and impacts: economic, social,	cultural, environmental and sustainability impacts
	of an engineer to public safety; the impacts of	environmental and sustainability	
	engineering activity: economic, social, cultural,		
	environmental and sustainability.		
Research	WK8: Engagement with selected knowledge in the	SK8: Engagement with the technological literature of	
literature	research literature of the discipline.	the discipline	

Range of Problem Solving (WP, SP, DP)

Attributes	Engineering	Engineering Technology	Engineering Technician	
	Complex Engineering Problems have characteristic	Broadly-defined Engineering Problems have	Well-defined Engineering Problems have	
	WP1 and some or all of WP2 to WP7:	characteristic SP1 and some or all of SP2 to SP7:	characteristic DP1 and some or all of DP2 to DP7:	
Depth of Knowledge	WP1: Cannot be resolved without in-depth	SP1: Cannot be resolved without engineering	DP1: Cannot be resolved without extensive practical	
Required	engineering knowledge at the level of one or more	knowledge at the level of one or more of SK 4,	knowledge as reflected in DK5 and DK6 supported	
	of WK3, WK4, WK5, WK6 or WK8 which allows a	SK5, and SK6 supported by SK3 with a strong	by theoretical	
	fundamental-based, first principles analytical	emphasis on the application of developed technology	knowledge defined in DK3 and DK4	
	approach.			
Range of conflicting	WP2: Involve wide-ranging or conflicting technical,	SP2: Involve a variety of factors which may impose	DP2: Involve several issues, but with few of these	
requirements	engineering and other issues.	conflicting constraints	exerting conflicting constraints	
Depth of analysis	WP3: Have no obvious solution and require abstract	SP3: Can be solved by application of well-proven	DP3: Can be solved in standardised ways	
required	thinking, originality in analysis to formulate suitable	analysis techniques		
	models.			
Familiarity of issues	WP4: Involve infrequently encountered issues.	SP4: Belong to families of familiar problems which	DP4: Are frequently encountered and thus familiar	
		are solved in well-accepted ways	to most practitioners in the practice area	
Extent of applicable	WP5: Are outside problems encompassed by	SP5: May be partially outside those encompassed by	DP5: Are encompassed by standards and/or	
codes	standards and codes of practice for professional	standards or codes of practice	documented codes of practice	
	engineering.			
Extent of stakeholder	WP6: Involve diverse groups of	SP6: Involve several groups of stakeholders with	DP6: Involve a limited range of stakeholders with	
involvement and level	stakeholders with widely varying	differing and occasionally conflicting needs	differing needs	
of conflicting	needs.			
requirements				
Interdependence	WP7: Are high level problems including many	SP7: Are parts of, or systems within complex	DP7: Are discrete components of engineering	
	component parts or sub problems.	engineering problems	systems	

Range of Engineering Activities (EA, TA, NA)

Attribute	Complex Activities	Broadly-defined Activities	Well-defined Activities
	Complex activities means (engineering)	Broadly defined activities means (engineering)	Well-defined activities means (engineering)
	activities or projects that have some or all of	activities or projects that have some or all of the following	activities or projects that have some or all of the
	the following characteristics:	characteristics:	following characteristics:
Range of	EA1: Involve the use of diverse resources (and for	TA1: Involve a variety of resources (and for this purposes	NA1: Involve a limited range of resources (and for
resources	this purpose resources includes people, money,	resources includes people, money, equipment, materials,	this purpose resources includes people, money,
	equipment, materials, information and technologies).	information and technologies)	equipment, materials, information and technologies)
Level of	EA2: Require resolution of significant problems	TA2: Require resolution of occasional interactions between	NA2: Require resolution of interactions between
interactions	arising from interactions between wide ranging or	technical, engineering and other issues, of which few are	limited technical and engineering issues with little or
	conflicting technical, engineering or other issues.	conflicting	no impact of wider issues
Innovation	EA3: Involve creative use of engineering principles	TA3: Involve the use of new materials, techniques or	NA3: Involve the use of existing materials
	and research-based knowledge in novel	processes in non-standard ways	techniques, or processes in modified or new ways
Consequences	EA4: Have significant consequences in a range of	TA4: Have reasonably predictable consequences that are	NA4: Have consequences that are locally important
to society and	contexts, characterised by difficulty of prediction and	most important locally, but may extend more widely	and not far-reaching
the environment	mitigation.		
Familiarity	EA5: Can extend beyond previous experiences by	TA5: Require a knowledge of normal operating procedures	NA5: Require a knowledge of practical procedures
	applying principles-based approaches.	and processes	and practices for widely-applied operations and
			processes.

Learning Domains

Cognitive		Psychomotor		Affective	
(Revised Bloom, 2000)		(Simpson, 1972)		(Krathwohl, 1973)	
C1	Remembering	P1	Perception	A1	Internalizes Values
C2	Understanding	P2	Set	A2	Organization
C3	Applying	P3	Guided Response	A3	Valuing
C4	Analysing	P4	Mechanism	A4	Responds to Phenomena
C5	Evaluating	P5	Complex Overt Response	A5	Receiving Phenomena
C6	Creating	P6	Adaptation		
		P7	Origination		

Sustainable Development Goals (SDGs) - https://sdgs.un.org/goals

SDG-1 : No Poverty

- SDG-2 : Zero Hunger
- SDG-3 : Good Health and Well-being
- SDG-4 : Quality Education
- SDG-5 : Gender Equality
- SDG-6 : Clean Water and Sanitation

SDG-7 : Affordable and Clean Energy

SDG-8 : Decent Work and Economic Growth

SDG-9 : Industry, Innovation and Infrastructure

- SDG-10 : Reduced Inequality
- SDG-11 : Sustainable Cities and Communities

SDG-12 : Responsible Consumption and Production

SDG-13 : Climate Action

SDG-14 : Life Below Water

- SDG-15 : Life on Land
- SDG-16 : Peace and Justice Strong Institutions
- SDG-17 : Partnerships to achieve the Goal

Entrepreneurship Integrated Education - *https://sqm.unimap.edu.my/images/pdf/BUKU_EIE.pdf*