
Functions
MMJ12503 – Computer programming

1

function()

Contents
1. Function with no return value
2. Function with return value
3. Recognize related project given
4. Functions return more than one value
5. Construct C program for Parallel Port

2

Introduction
• A problem can be solved easily if it is

decomposed into parts. Similarly a C
program decomposes a program into
its component functions.

• Big problems require big programs –
too big to be written all at one time
or to be written by a single
programmer. Thus by decomposing a
program into functions, we divide the
work among several programmers.

• We can test the components of
programs separately. We can change
one function without changing or
affecting the other functions.

Problem Function

Program

Function 1

Function 2

Function 3

Function 4

7

What is a function?
• Function is a series of statements that

have been grouped together and given a
name.

• In C, a function doesn’t necessarily have
arguments, not does it necessarily
compute a value.

• Functions provide a way to reuse code that
is required in more than one place in your
program.

• Function is an independent module and
each function solves a part of the problem.

Program

Function 1

Function 2

Function 3

Function 3

Function 3

8

• Once after completing the task, the called
function returns the control to the caller
function.

• When main() completes its operations,
control returns to the OS.

Program

Function 1

Function 2

Function 3

Function 3

Function 3

9

Caller function

Called function

/* Hello world program */

#include <stdio.h>

int main(void)
{

printf(“Hello world!\n”);
return 0;

}

Main ()

OS

Function 01

/* Hello world program */

#include <stdio.h>

Int main(void)
{

printf(“Hello world!\n”);
return 0;

}

Hello world program

Int main(void)
{

printf(“Hello world!\n”);
return 0;

}

printf(void)
{

……;
……;
return;

}

10

Operating system
(OS)

• In C, function can be invoked or called by
another function.

• The caller function passes information to
the called function.

• The called function may return information
to the caller function.

11

Program

Function 1

Function 2

Function 3

Function 4

Caller function

Called function

#include <stdio.h>

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

int square(int a)
{

return (a*a);
}

Function 02

• The following combinations of information passing are possible:
1. The caller function passes information and the called function returns

information.
2. The caller function passes information but the called function returns none.
3. The caller function passes nothing but the called function returns

information.
4. The caller function passes nothing and the called function returns none.

• The name of a function is used in three ways:
1. for declaration
2. in a call
3. for definition

• A function must be first declared and defined.

12

• The general format for declaring a function that accepts some
arguments and returns some value as a result can be given as:

The Return_data_type to be returned (namely void, int, float, char, double).
If return no value then use void.
The function_name (which requires to call the function). The function name

is a valid C identifier.
The data_type is similar to the Return_data_type but is use to explain

each of the variables (e.g. variable1, variable2,…). If accept no value then
use void. 13

Return_data_type function_name(data_type variable1, data_type variable2,…);

char convert_to_uppercase(char ch);
float avg(int a, int b);
int find_largest(int a, int b, int c);
double multiply(float a, float b);
void swap(int a, int b);
void print(void);

Function declaration

• When a function is defined, space is allocated for that function in the
memory.

• A function definition comprises two parts:
1. Function header
2. Function body

• The syntax of a function definition can be given as:

14

Return_data_type function_name(data_type variable1, data_type variable2,…)
{

……
statements
……
return(variable);

}

It is the same as the early declaration
of a function but without semicolon ;

Function definition

• Function header is same as that of function declaration. The only
difference between the two is that a function header is not followed by
a semicolon.

• The list of variables in the function header is known as the formal
parameter list. The parameter list may have zero or more parameters
of any data type.

• The argument names in the function declaration and function
definition need not be the same. However, the data types of the
arguments must match with that specified in function declaration as
well as function definition.

• The function body is comprising of program statement within {}.

15

16

Review of today lecture

• C program decomposes a program into its component functions.
• Function is a series of statements that have been grouped together

and given a name.

17

Problem Function

Program

main

Function 2

Function 1

call Function 1

call Function 2

call Function 1

Review of today lecture

• The name of a function is used in three ways:
1. for declaration
2. in a call
3. for definition

• A function must be first declared and defined.
• The argument names in the function

declaration and function definition need not be
the same. However, the data types of the
arguments must match with that specified in
function declaration as well as function
definition.

18

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

int square(int a)
{

return (a*a);
}

Function 02*

Review of today lecture

• The syntax of a function declaration can be given as:

19

Return_data_type function_name(data_type variable1, data_type variable2,…);

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

Function 02*

Don’t forget about semicolon at
end of statement for function

declaration

Review of today lecture

• The syntax of a function definition can be given as:

20

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

Function 02*

Return_data_type function_name(data_type variable1, data_type variable2,…)
{

……
statements
……
return(variable);

}

int square(int a)
{

return (a*a);
}

Don’t write semicolon at end of
statement for function defination

