
Functions
MMJ12503 – Computer programming

1

function()

Refresh of previous lecture

• C program decomposes a program into its component functions.
• Function is a series of statements that have been grouped together

and given a name.

2

Problem Function

Program

main

Function 2

Function 1

call Function 1

call Function 2

call Function 1

Refresh of previous lecture

• The name of a function is used in three ways:
1. for declaration
2. in a call
3. for definition

• A function must be first declared and defined.
• The argument names in the function

declaration and function definition need not be
the same. However, the data types of the
arguments must match with that specified in
function declaration as well as function
definition.

3

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

int square(int a)
{

return (a*a);
}

Function 02*

Refresh of previous lecture

• The syntax of a function declaration can be given as:

4

Return_data_type function_name(data_type variable1, data_type variable2,…);

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

Function 02*

Don’t forget about semicolon at
end of statement for function

declaration

Refresh of previous lecture

• The syntax of a function definition can be given as:

5

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

Function 02*

Return_data_type function_name(data_type variable1, data_type variable2,…)
{

……
statements
……
return(variable);

}

int square(int a)
{

return (a*a);
}

Don’t write semicolon at end of
statement for function defination

6

• The syntax of a function declaration and
function definition.

Return_data_type function_name(data_type
variable1, data_type variable2,…);

Return_data_type function_name(data_type
variable1, data_type variable2,…)
{

……
statements
……
return(variable);

}

• When a return statement in a function is executed, the function
returns to its caller function.

• The return statement is optional in a function that does not return a
value but, if used it is written as:

• If the return is not specified, C will assume it is of type integer.
• If a function that does not have a return statement, the called function

returns to the caller function after the last statement in the function’s
body is executed.

7

return;

Return statement

• A function that returns a value must have at least one return
statement which may be written as:

• A function can have any number of return statements. Of course only
one return statement is executed per invocation, because the return
statement returns control and a value to the caller function.

• As a rule of thumb keep the number of return statements small;
otherwise the function becomes hard to understand, hard to debug
and hard to alter.

8

return(expression); or return expression;
return(30*6+20); return 30*6+20;

• The function call statement invokes the function.
• When the function is invoked the compiler jumps to the called function

to execute the statements that are a part of that function. Once the
called function is executed, the program control passes back to the
calling function.

• Function call statement has the following syntax

• When the function declaration is present before the function call, the
compiler can check if the correct number and type of arguments are
used in the function call and the returned value, if any, is being used
reasonably.

9

Function call

function_name(variable1, variable2,…);

• Function definitions are often placed in a separate header file which
can be included in other C source files that wish to use the functions.

• For example, the header file stdio.h contains the definition of scanf
and printf functions.

10

/* Declaration */
void greeting(void);
int main(void)
{
/* Statement */

greeting();
return 0;

}

void greeting(void)
{

printf(“Hello world!”);
return;

}

Declaration is
coded first

Function 03
Call is in

statement section

Definition is after
the call

Review of today lecture – part 1

• When a return statement in a function is executed, the function
returns to its caller function.

• The return statement is optional in a function.
• The function call statement invokes the function.
• When the function is invoked the compiler jumps to the called

function to execute the statements that are a part of that function.
Once the called function is executed, the program control passes back
to the calling function.

11

Review of today lecture – part 1

• Function call statement has the following syntax.

12

function_name(variable1, variable2,…);

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

int square(int a)
{

return (a*a);
}

Function 02*

Don’t forget about semicolon at
end of statement for function

declaration

13

/* example of using function */
/* convert degree F to degree C */
#include <stdio.h>

float F2C(float far);

int main(void)
{

float far,cen;
printf(“Enter temp in degree F : ”);
scanf(“%f”,&far);
cen = F2C(far);
printf(“Temp in degree C is %f\n”,cen);
return 0;

}

float F2C(float far)
{

return((5.0/9.0)*(far-32.0));
}

Please try to identify the
components of function in the given
program:
1. Function declaration
2. Call function
3. Function definition

Function 04

14

/* Add two numbers using functions */
#include <stdio.h>
float addnumber(float num1, float num2);

void main(void)
{

float n1,n2,sum;
printf(“please enter two numbers”);
scanf(“%f %f”,&n1,&n2);
sum = addnumber(n1,n2);
printf(“%f + %f = %f\n”,n1,n2,sum);
return;

}

float addnumber(float num1, float num2)
{

float result;
result= num1 + num2;
return(result);

}
Function 05

Please try to identify the
components of function in the given
program:
1. Function declaration
2. Call function
3. Function definition

15

/* Right angled triangle */
#include <stdio.h>
#include <math.h>

float hypotenuse(float side1, float side2);
float areatri(float side1, float side2);
float perimeter(float side1, float side2);

void main(void)
{

float s1,s2,area,hypo,peri;
printf(“please input the two sides ”);
scanf(“%f %f”,&s1,&s2);
area = areatri(s1, s2);
peri = perimeter(s1, s2);
hypo = hypotenuse(s1, s2);
printf(“The sides of the triangle is %f
%f\n”,s1,s2);

printf(“The area = %f\n”,area);
printf(“The perimeter = %f\n”,peri);
printf(“The hypotenuse = %f\n”,hypo);

return;
}

float hypotenuse(float side1, float side2)
{

return(sqrt(side1*side1+side2*side2));
}

float areatri(float side1, float side2)
{

return(0.5*side1*side2);
}

float perimeter(float side1, float side2)
{

float side3;
side3=hypotenuse(side1,side2);
return(side1+side2+side3);

}

Function 06

• A change of state in the program takes place due to the action of a
function, which is termed as a side effect of a function.

• The side effect may be:
accepting data from outside the program.
sending data out of the program to a file or to the monitor.
changing the value of a variable in the calling function.

16

Side effect in a function

• When a function is called, the calling function may have to pass some
values to the called function.

• There are two ways in which arguments or parameters can be passed
to the called function. They include:
Call by value in which values of the variables are passed by the calling function

to the called function.
Call by reference in which address of the variables are passed by the calling

function to the called function.

17

Passing parameters to the function

• Every argument to a function is an expression, which has a value.
• C passes an argument to an called function by making a copy of the

expression value, storing it in a temporary cell.
• Only the copy of the value is passed to the function argument.
• The original data in the calling function are safe and unchanged.
• As only the copy of the values are passed to the function, this method

is called call by values.

18

Call by Value

• The biggest advantages of using call by value technique to pass
arguments to the called function is that arguments can be variables
(e.g. x), literals (e.g. 6), or expressions (e.g. X+1).

• The disadvantage is that copying data consumes additional storage
space.

• It can take a lot of time to copy, thereby resulting in performance
penalty, especially if the function is called many times.

19

20

Function 07

21

Function 08

22

Please try the given programs:
1. Find square of a number
2. Modify a number

Function 09

• It links the variable identifiers in the calling function to their
corresponding parameters in the called function.

• When the called function changes a value in a variable, then it actually
changes the variables in the calling function. This is done by passing an
address to the called function.

• To indicate that an argument is passed using call by reference, an
ampersand sign (&) is placed after the type in the parameter list.

• & - the address operator.
• * - indirection operator.
• If ‘addr’ is a variable that contains an address then *addr means the

value pointed by the address stored in the variable ‘addr’. Here ‘addr’
is a pointer variable.

23

Call by reference

24

Function 12

25

Function 13

26

Function 14

27

Please try the given programs:
1. Call a number by reference
2. Find biggest of three integers

Function 15

Review of today lecture – part 2

• A change of state in the program takes place due to the action of a
function, which is termed as a side effect of a function.
accepting data from outside the program.
sending data out of the program to a file or to the monitor.
changing the value of a variable in the calling function.

• Call by value in which values of the variables are passed by the calling
function to the called function.

• C passes an argument to an called function by making a copy of the
expression value, storing it in a temporary cell.

28

Review of today lecture – part 2

• Call by reference in which address of the variables are passed by the
calling function to the called function.

• To indicate that an argument is passed using call by reference, an
ampersand sign (&) is placed after the type in the parameter list.

• & - the address operator.
• * - indirection operator.

29

main()
{

......

......
func1(&var1,&var2);
......
......
return 0;

}

func1(*var1,*var2)
{

......

......
*var1
*var2
......
return;

}

30

/* Find the square of a number */
#include <stdio.h>

int square(int num);

int main(void)
{

int s1,result;
scanf(“%d”,&s1);
result = square(s1);
printf(“The square of %d is %d\n”,s1,result);
return 0;

}

int square(int num)
{

return(num*num);
}

Function 10

Is this a call by value or call by
reference?

Please try to identify the input
and output of function in the
given program:
1. input
2. output

If user key in
a) 5
b) 6.0
c) 4/2
d) number

31

/* Modify a number */
#include <stdio.h>

void modify(int x);

int main(void)
{

int x=5;
printf(“value of x before calling modify is %d\n”,x);
modify(x);
printf(“value of x after calling modify is %d\n”,x);
return 0;

}

void modify(int x)
{

printf(“value of local variable x in modify is %d\n”,x);
x=10;
printf(“value of x after reassigning local variable x in modify is %d\n”,x);
return;

}

Result:
value of x before calling modify is 5
value of local variable x in modify is 5
value of x after reassigning local variable x in modify is 10;
value of x after calling modify is 5

Function 11

Is this a call by value or call by
reference?

Please try to identify the input
and output of function in the
given program:
1. input
2. output

If number is update as below,
what is out of program.
a) 6.0
b) 8/2
c) number

32

/* Call a number by reference */
#include <stdio.h>
void add(int *n);

int main()
{

int num=2;
printf(“\n The value of num before calling
the function = %d”,num);

add(&num);
printf(“\n The value of num after calling
the function = %d”,num);

return 0;
}

void add(int *n)
{

*n=*n+10;
printf(“\n The value of num in the calling
the function = %d”,*n);

} Function 16

33

Result:
The value of num before calling the function = 2
The value of num in the calling the function = 12
The value of num after calling the function = 12

34

/* Find biggest of three integers */
#include <stdio.h>
int greater(int a, int b, int c);

int main()
{

int num1, num2, num3, large;
printf(“\n Enter the first number: ”);
scanf(“%d”, &num1);
printf(“\n Enter the second number: ”);
scanf(“%d”, &num2);
printf(“\n Enter the third number: ”);
scanf(“%d”, &num3);

large=greater(num1,num2,num3);
printf(“\n Largest number = %d”,large);
return 0;

}

int greater(int a, int b, int c)
{

if(a>b && a>c)
return a;

if(b>a && b>c)
return b;

else
return c;

}

Function 17

35

Review of today lecture

• Function call statement has the following syntax.

36

function_name(variable1, variable2,…);

#include <stdio.h>

int square(int m);

void main(void)
{

int x = 5;
int y;
y=square(x);
return 0;

}

int square(int a)
{

return (a*a);
}

Function 02*

Don’t forget about semicolon at
end of statement for function

declaration

Review of today lecture
• To indicate that an argument is passed using call by reference, an

ampersand sign (&) is placed after the type in the parameter list.
• & - the address operator.
• * - indirection operator.

37

void add(int *n)
{

*n=*n+10;
printf(“\n The value of num in the
calling the function = %d”,*n);

}

#include <stdio.h>
void add(int *n);

int main()
{

int num=2;
printf(“\n The value of num before
calling the function = %d”,num);

add(&num);
printf(“\n The value of num after
calling the function = %d”,num);

return 0;
}

Function 16

